Stanford NLP Chinese(中文)的使用
Stanford NLP tools提供了处理中文的三个工具,分别是分词、Parser;具体参考:
http://nlp.stanford.edu/software/parser-faq.shtml#o
1.分词 Chinese segmenter
下载:http://nlp.stanford.edu/software/
A Java implementation of a CRF-based Chinese Word Segmenter
这个包比较大,运行时候需要的内存也多,因而如果用eclipse运行的时候需要修改虚拟内存空间大小:
运行-》自变量-》VM自变量-》-Xmx800m (最大内存空间800m)
demo代码(修改过的,未检验):
Properties props = new Properties();
props.setProperty("sighanCorporaDict", "data"); // props.setProperty("NormalizationTable", "data/norm.simp.utf8"); // props.setProperty("normTableEncoding", "UTF-8"); // below is needed because CTBSegDocumentIteratorFactory accesses it props.setProperty("serDictionary","data/dict-chris6.ser.gz"); //props.setProperty("testFile", args[0]); props.setProperty("inputEncoding", "UTF-8"); props.setProperty("sighanPostProcessing", "true"); CRFClassifier classifier = new CRFClassifier(props); classifier.loadClassifierNoExceptions("data/ctb.gz", props); // flags must be re-set after data is loaded classifier.flags.setProperties(props); //classifier.writeAnswers(classifier.test(args[0])); //classifier.testAndWriteAnswers(args[0]); String result = classifier.testString("我是中国人!"); System.out.println(result);
2. Stanford Parser
可以参考http://nlp.stanford.edu/software/parser-faq.shtml#o
http://blog.csdn.net/leeharry/archive/2008/03/06/2153583.aspx
根据输入的训练库不同,可以处理英文,也可以处理中文。输入是分词好的句子,输出词性、句子的语法树(依赖关系)
英文demo(下载的压缩文件中有):
LexicalizedParser lp = new LexicalizedParser("englishPCFG.ser.gz");
lp.setOptionFlags(new String[]{"-maxLength", "80", "-retainTmpSubcategories"}); String[] sent = { "This", "is", "an", "easy", "sentence", "." }; Tree parse = (Tree) lp.apply(Arrays.asList(sent)); parse.pennPrint(); System.out.println(); TreebankLanguagePack tlp = new PennTreebankLanguagePack(); GrammaticalStructureFactory gsf = tlp.grammaticalStructureFactory(); GrammaticalStructure gs = gsf.newGrammaticalStructure(parse); Collection tdl = gs.typedDependenciesCollapsed(); System.out.println(tdl); System.out.println(); TreePrint tp = new TreePrint("penn,typedDependenciesCollapsed"); tp.printTree(parse);中文有些不同:
//LexicalizedParser lp = new LexicalizedParser("englishPCFG.ser.gz");
LexicalizedParser lp = new LexicalizedParser("xinhuaFactored.ser.gz"); //lp.setOptionFlags(new String[]{"-maxLength", "80", "-retainTmpSubcategories"}); // String[] sent = { "This", "is", "an", "easy", "sentence", "." }; String[] sent = { "他", "和", "我", "在", "学校", "里", "常", "打", "桌球", "。" }; String sentence = "他和我在学校里常打台球。"; Tree parse = (Tree) lp.apply(Arrays.asList(sent)); //Tree parse = (Tree) lp.apply(sentence); parse.pennPrint(); System.out.println();/* TreebankLanguagePack tlp = new PennTreebankLanguagePack(); GrammaticalStructureFactory gsf = tlp.grammaticalStructureFactory(); GrammaticalStructure gs = gsf.newGrammaticalStructure(parse); Collection tdl = gs.typedDependenciesCollapsed(); System.out.println(tdl); System.out.println();*/ //only for English //TreePrint tp = new TreePrint("penn,typedDependenciesCollapsed"); //chinese TreePrint tp = new TreePrint("wordsAndTags,penn,typedDependenciesCollapsed",new ChineseTreebankLanguagePack()); tp.printTree(parse);然而有些时候我们不是光只要打印出来的语法依赖关系,而是希望得到关于语法树(图),则需要采用如下的程序:
String[] sent = { "他", "和", "我", "在", "学校", "里", "常", "打", "桌球", "。" }; ParserSentence ps = new ParserSentence(); Tree parse = ps.parserSentence(sent); parse.pennPrint(); TreebankLanguagePack tlp = new ChineseTreebankLanguagePack(); GrammaticalStructureFactory gsf = tlp.grammaticalStructureFactory(); GrammaticalStructure gs = gsf.newGrammaticalStructure(parse); Collection tdl = gs.typedDependenciesCollapsed(); System.out.println(tdl); System.out.println(); for(int i = 0;i < tdl.size();i ++) { //TypedDependency(GrammaticalRelation reln, TreeGraphNode gov, TreeGraphNode dep) TypedDependency td = (TypedDependency)tdl.toArray()[i]; System.out.println(td.toString()); }//采用GrammaticalStructure的方法( gov, dep)可以获得两个词的语法依赖关系